Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.407
Filtrar
1.
J Biomech ; 166: 112067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38556387

RESUMO

Although researches on nanoparticle-based (NP-based) drug delivery system for atherosclerosis treatment have grown rapidly in recent years, there are limited studies in quantifying the effects of targeting drugs on plaque components and microenvironment. The purpose of the present study was to quantitatively assess the targeting therapeutic effects against atherosclerosis by establishing a multiscale mathematical model. The multiscale model involved subcellular, cellular and microenvironmental scales to simulate lipid catabolism, macrophage behaviors and dynamics of microenvironmental components, respectively. In vitro and in vivo experimental data were integrated into the mathematical model according to Bayesian statistics, in order to evaluate the therapeutic effects of a proposed NP-based platform for macrophage-specific delivery to simultaneously deliver SR-A siRNA (to reduce LDL uptake) and LXR-L (to stimulate cholesterol efflux). Dosage variation analysis was then performed to investigate the drug efficacy under varied dosage combinations of SR-A siRNA and LXR-L. The simulation results demonstrated that the dynamics of the microenvironmental components presented different developments in Untreated and Treated groups. We also found that the balance of lipid metabolism between uptake and efflux resulted in the improvement of lipid and inflammatory microenvironment, consequently in the plaque regression. In addition, the model predicted optimized dosage combinations according to the co-effect analysis of the two drugs on the lipid microenvironment. This study suggests that multiscale modeling can be a powerful quantitative tool for estimating the therapeutic effects of targeting drugs for plaque regression and designing the enhanced treatment strategies against atherosclerosis.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Humanos , Teorema de Bayes , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Nanopartículas/ultraestrutura , RNA Interferente Pequeno/uso terapêutico , Lipídeos
2.
Int J Pharm ; 654: 123943, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38432451

RESUMO

Hypoxia as an inherent feature in tumors is firmly associated with unsatisfactory clinical outcomes of photodynamic therapy (PDT) since the lack of oxygen leads to ineffective reactive oxygen species (ROS) productivity for tumor eradication. In this study, an oxidative phosphorylation (OXPHOS) targeting nanoplatform was fabricated to alleviate hypoxia and enhance the performance of PDT by encapsulating IR780 and OXPHOS inhibitor atovaquone (ATO) in triphenylphosphine (TPP) modified poly(ethylene glycol) methyl ether-block-poly(L-lactide-co-glycolide) (mPEG-PLGA) nanocarriers (TNPs/IA). ATO by interrupting the electron transfer in OXPHOS could suppress mitochondrial respiration of tumor cells, economising on oxygen for the generation of ROS. Benefiting from the mitochondrial targeting function of TPP, ATO was directly delivered to its site of action to obtain highlighted effect at a lower dosage. Furthermore, positioning the photosensitizer IR780 to mitochondria, a more vulnerable organelle to ROS, was a promising method to attenuate the spatiotemporal limitation of ROS caused by its short half-life and narrow diffusion radius. As a result, TNPs/IA exhibited accurate subcellular localization, lead to the collapse of ATP production by damaging mitochondrion and elicited significant antitumor efficacy via oxygen-augmented PDT in the HeLa subcutaneous xenograft model. Overall, TNPs/IA was a potential strategy in photodynamic eradication of tumors.


Assuntos
Nanopartículas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Fosforilação Oxidativa , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Nanopartículas/ultraestrutura , Oxigênio , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral
3.
ACS Appl Mater Interfaces ; 16(9): 11217-11227, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386424

RESUMO

Single particle tracking (SPT) is a powerful technique for real-time microscopic visualization of the movement of individual biomolecules within or on the surface of living cells. However, SPT often suffers from the suboptimal performance of the photon-emitting labels used to tag the biomolecules of interest. For example, fluorescent dyes have poor photostability, while quantum dots suffer from blinking that hampers track acquisition and interpretation. Upconverting nanoparticles (UCNPs) have recently emerged as a promising anti-Stokes luminescent label for SPT. In this work, we demonstrated targeted SPT using UCNPs. For this, we synthesized 30 nm diameter doped UCNPs and coated them with amphiphilic polymers decorated with polyethylene glycol chains to make them water-dispersible and minimize their nonspecific interactions with cells. Coated UCNPs highly homogeneous in brightness (as confirmed by a single particle investigation) were functionalized by immunoglobulin E (IgE) using a biotin-streptavidin strategy. Using these IgE-UCNP SPT labels, we tracked high-affinity IgE receptors (FcεRI) on the membrane of living RBL-2H3 mast cells at 37 °C in the presence and absence of antigen and obtained good agreement with the literature. Moreover, we used the FcεRI-IgE receptor-antibody system to directly compare the performance of UCNP-based SPT labels to organic dyes (AlexaFluor647) and quantum dots (QD655). Due to their photostability as well as their backgroundless and continuous luminescence, SPT trajectories obtained with UCNP labels are no longer limited by the photophysics of the label but only by the dynamics of the system and, in particular, the movement of the label out of the field of view and/or focal plane.


Assuntos
Nanopartículas , Pontos Quânticos , Imagem Individual de Molécula , Nanopartículas/ultraestrutura , Luminescência , Imunoglobulina E
4.
World J Microbiol Biotechnol ; 39(11): 289, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37640981

RESUMO

Coal fly ash (CFA) is an industrial byproduct produced during the production of electricity in thermal power plants from the burning of pulverized coal. It is considered hazardous due to the presence of toxic heavy metals while it is also considered valuable due to the presence of value-added minerals like silicates, alumina, and iron oxides. Silica nanoparticles' demands and application have increased drastically in the last decade due to their mesoporous nature, high surface area to volume ratio, etc. Here in the present research work, short rod-shaped, mesoporous silica nanoparticles (MSN) have been synthesized from coal fly ash by using Bacillus circulans MTCC 6811 in two steps. Firstly, CFA was kept with the bacterial culture for bioleaching for 25 days in an incubator shaker at 120 rpm. Secondly, the dissolved silica in the medium was precipitated with the 4 M sodium hydroxide to obtain a short rod-shaped MSN. The purification of the synthesized silica particle was done by treating them with 1 M HCl at 120 °C, for 90 min. The synthesized short rod-shaped MSN were characterized by UV-vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Particle size analyzer (PSA), Field emission scanning electron microscopy (FESEM), and transmission electron microscope. The microscopic techniques revealed the short rod-shaped mesoporous silica nanoparticles (MSN) for the final nano-silica, whose size varies from 40 to 80 nm, with an average size of 36 ± 5 nm. The XRD shows the crystalline nature of the synthesized MSN having a crystallite size of 36 nm. The FTIR showed the three characteristic bands in the range of 400-1100 cm-1, indicating the purity of the sample. The energy dispersive X-ray (EDX) showed 53.04 wt% oxygen and 43.42% Si along with 3.54% carbon in the final MSN. The particle size analyzer revealed that the average particle size is 368.7 nm in radius and the polydispersity index (PDI) is 0.667. Such a novel and economical approach could be helpful in the synthesis of silica in high yield with high purity from coal fly ash and other similar waste.


Assuntos
Bacillus , Microbiologia Industrial , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Dióxido de Silício/economia , Dióxido de Silício/metabolismo , Nanopartículas/química , Nanopartículas/economia , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Cinza de Carvão/metabolismo , Bacillus/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Transmissão
5.
Biochem Biophys Res Commun ; 674: 1-9, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37392717

RESUMO

In an effort to enhance the antitumor efficacy of breast cancer treatment, the chemotherapeutic agent Paclitaxel (PTX) was encapsulated within hyaluronic acid (HA) modified hollow mesoporous silica (HMSNs). In vitro drug release assays showed that the resulting formulation, Eu-HMSNs-HA-PTX, exhibited enzyme-responsive drug release. In addition, cell cytotoxicity and hemolysis assays demonstrated the favorable biocompatibility of both Eu-HMSNs and Eu-HMSNs-HA. Notably, compared to Eu-HMSNs alone, Eu-HMSNs-HA showed enhanced accumulation within CD44-expressing cancer cells (MDA-MB-231). As anticipated, apoptosis experiments indicated that Eu-HMSNs-HA-PTX displayed significantly greater cytotoxicity toward MDA-MB-231 cells than non-targeted Eu-HMSNs-PTX and free PTX. In conclusion, Eu-HMSNs-HA-PTX demonstrated excellent anticancer effects and holds promise as a potent candidate for the efficient therapy of breast cancer.


Assuntos
Neoplasias da Mama , Európio , Ácido Hialurônico , Nanopartículas , Paclitaxel , Dióxido de Silício , Európio/química , Dióxido de Silício/química , Ácido Hialurônico/química , Paclitaxel/farmacologia , Nanopartículas/química , Nanopartículas/ultraestrutura , Materiais Biocompatíveis , Humanos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos
6.
Macromol Biosci ; 23(11): e2300151, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37295777

RESUMO

Insufficient accumulation of drug at the tumor site and the low drug response are the main reason for the unsatisfactory effect of cancer therapy. Delivery drugs exquisitely to subcellular level can be employed to reduce side effects, and expand the therapeutic window. Herein, a triphenylphosphine (TPP) modified lipid nanoparticles is designed which are loaded with the photosensitizer indocyanine green (ICG) and chemotherapeutic paclitaxel (PTX) for mitochondria-targeted chemo-phototherapy. Owing to the movement of majority mitochondria along microtubules in cytoplasm, mitochondrial targeting may enable PTX to act more effectively. Meanwhile, the existence of chemo-drug potentiates the phototherapy to achieve synergistic anti-tumor activity. As expected, mitochondria targeting nanomedicine (M-ICG-PTX NPs) showed improved mitochondria targeted cellular distribution and enhanced cell cytotoxicity in vitro. Also, M-ICG-PTX NPs exhibited higher tumor growth inhibition ability by promoting cell apoptosis and oxeiptosis pathway, and high effective inhibition of primary tumor growth and tumor metastasis. Taken together, M-ICG-PTX NPs may be promising nanoplatforms to achieve potent therapeutic effect for the combination of chemo- and photo-therapy (PTT).


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Linhagem Celular Tumoral , Fototerapia , Paclitaxel/farmacologia , Verde de Indocianina/farmacologia , Estresse Oxidativo , Nanopartículas/ultraestrutura , Mitocôndrias
7.
Sci Adv ; 9(23): eadh1736, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294758

RESUMO

Nanorobotic manipulation to access subcellular organelles remains unmet due to the challenge in achieving intracellular controlled propulsion. Intracellular organelles, such as mitochondria, are an emerging therapeutic target with selective targeting and curative efficacy. We report an autonomous nanorobot capable of active mitochondria-targeted drug delivery, prepared by facilely encapsulating mitochondriotropic doxorubicin-triphenylphosphonium (DOX-TPP) inside zeolitic imidazolate framework-67 (ZIF-67) nanoparticles. The catalytic ZIF-67 body can decompose bioavailable hydrogen peroxide overexpressed inside tumor cells to generate effective intracellular mitochondriotropic movement in the presence of TPP cation. This nanorobot-enhanced targeted drug delivery induces mitochondria-mediated apoptosis and mitochondrial dysregulation to improve the in vitro anticancer effect and suppression of cancer cell metastasis, further verified by in vivo evaluations in the subcutaneous tumor model and orthotopic breast tumor model. This nanorobot unlocks a fresh field of nanorobot operation with intracellular organelle access, thereby introducing the next generation of robotic medical devices with organelle-level resolution for precision therapy.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Estruturas Metalorgânicas/farmacologia , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Nanopartículas/ultraestrutura , Mitocôndrias
8.
J Phys Chem B ; 127(12): 2701-2707, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36944080

RESUMO

Single-molecule localization microscopy (SMLM) allows super-resolution imaging, mapping, counting, and sizing of biological nanostructures such as cell organelles and extracellular vesicles (EVs), but sizing structures smaller than ∼100 nm can be inaccurate due to single-molecule localization error caused by distortion of the point spread function and limited photon number. Here we demonstrate a method to correct localization error when sizing vesicles and other spherical nanoparticles with SMLM and compare sizing results using two vesicle labeling schemes. We use mean approximation theory to derive a simple equation using full width at half-maximum (FWHM) for correcting particle sizes measured by two-dimensional SMLM, validate the method by sizing streptavidin-coated polystyrene nanobeads with the SMLM technique dSTORM with and without error correction, using transmission electron microscopy (TEM) for comparison, and then apply the method to sizing small seminal EVs. Nanobead sizes measured by dSTORM became increasingly less accurate (larger than TEM values) for beads smaller than 50 nm. The error-correction method reduced the size difference versus TEM from 15% without error correction to 7% with error correction for 40 nm beads, from 44% to 9% for 30 nm beads, and from 66% to 15% for 20 nm beads. Seminal EVs were labeled with a lipophilic membrane dye (MemBright 700) and with an Alexa Fluor 488-anti-CD63 antibody conjugate, and were sized separately using both dyes by dSTORM. Error-corrected exosome diameters were smaller than uncorrected values: 72 nm vs 79 nm mean diameter with membrane dyes; 84 nm vs 97 nm with the antibody-conjugated dyes. The mean error-corrected diameter was 12 nm smaller when using the membrane dye than when using the antibody-conjugated dye likely due to the large size of the antibody. Thus, both the error-correction method and the compact membrane labeling scheme reduce overestimation of vesicle size by SMLM. This error-correction method has a low computational cost as it does not require correction of individual blinking events, and it is compatible with all SMLM techniques (e.g., PALM, STORM, and DNA-PAINT).


Assuntos
Vesículas Extracelulares , Nanopartículas , Imagem Individual de Molécula , Vesículas Extracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Imagem Individual de Molécula/métodos
9.
Chemosphere ; 323: 138272, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36863628

RESUMO

Widely used for soil amendment, carbon sequestration, and remediation of contaminated soils, biochars (BCs) inevitably produce a large number of nanoparticles with relatively high mobility. Geochemical aging alters chemical structure of these nanoparticles and thus affect their colloidal aggregation and transport behavior. In this study, the transport of ramie derived nano-BCs (after ball-milling) was investigated by different aging treatments (i.e., photo (PBC) and chemical aging (NBC)) as well as the managing BC under different physicochemical factors (i.e., flow rates, ionic strengths (IS), pH, and coexisting cations). Consequences of the column experiments indicated aging promoted the mobility of the nano-BCs. Compared to the nonaging BC, consequences of spectroscopic analysis demonstrated the aging BCs exhibited a number of tiny corrosion pores. Both of these aging treatments contribute to a more negative zeta potential and a higher dispersion stability of the nano-BCs, which is caused by the abundance of O-functional groups. Also the specific surface area and mesoporous volume of both aging BCs increased significantly, with the increase being more pronounced for NBC. The breakthrough curves (BTCs) obtained for the three nano-BCs were modelled by the advection-dispersion equation (ADE), which included first-order deposition and release terms. The ADE revealed high mobility of aging BCs, which meant their retention in saturated porous media was reduced. This work contributes to a comprehensive understanding of the transport of aging nano-BCs in the environment.


Assuntos
Nanopartículas , Solo , Boehmeria/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria por Raios X , Concentração de Íons de Hidrogênio , Movimento , Cátions/química , Meio Ambiente , Solo/química , Fatores de Tempo , Modelos Teóricos
10.
J Microbiol Immunol Infect ; 56(2): 257-266, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36127231

RESUMO

BACKGROUND: The exploration of virology knowledge was limited by the optical technology for the observation of virus. Previously, a three-dimensional multi-resolution real-time microscope system (3D-MRM) was developed to observe the uptake of HIV-1-tat peptide-modified nanoparticles in cell membrane. In this study, we labeled HIV-1 virus-like particles (VLPs) with passivated giant quantum dots (gQDs) and recorded their interactive trajectories with human Jurkat CD4 cells through 3D-MRM. METHODS: The labeled of gQDs of the HIV-1 VLPs in sucrose-gradient purified viral lysates was first confirmed by Cryo-electronic microscopy and Western blot assay. After the infection with CD4 cells, the gQD-labeled VLPs were visualized and their extracellular and intracellular trajectories were recorded by 3D-MRM. RESULTS: A total of 208 prime trajectories was identified and classified into three distinct patterns: cell-free random diffusion pattern, directional movement pattern and cell-associated movement pattern, with distributions and mean durations were 72.6%/87.6 s, 9.1%/402.7 s and 18.3%/68.7 s, respectively. Further analysis of the spatial-temporal relationship between VLP trajectories and CD4 cells revealed the three stages of interactions: (1) cell-associated (extracellular) diffusion stage, (2) cell membrane surfing stage and (3) intracellular directional movement stage. CONCLUSION: A complete trajectory of HIV-1 VLP interacting with CD4 cells was presented in animation. This encapsulating method could increase the accuracy for the observation of HIV-1-CD4 cell interaction in real time and three dimensions.


Assuntos
Linfócitos T CD4-Positivos , Membrana Celular , HIV-1 , Microscopia Eletrônica , Pontos Quânticos , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/ultraestrutura , Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , HIV-1/ultraestrutura , Imageamento Tridimensional/métodos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Peptídeos Penetradores de Células/fisiologia , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Nanopartículas/ultraestrutura , Nanopartículas/virologia , Partículas Artificiais Semelhantes a Vírus/fisiologia , Microscopia Eletrônica/métodos
11.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431808

RESUMO

Diabetes mellitus is one of the most prevalent metabolic disorders characterized by hyperglycemia due to impaired glucose metabolism. Overproduction of free radicals due to chronic hyperglycemia may cause oxidative stress, which delays wound healing in diabetic conditions. For people with diabetes, this impeded wound healing is one of the predominant reasons for mortality and morbidity. The study aimed to develop an Ocimum sanctum leaf extract-mediated green synthesis of titanium dioxide (TiO2) nanoparticles (NPs) and further incorporate them into 2% chitosan (CS) gel for diabetic wound healing. UV-visible spectrum analysis recorded the sharp peak at 235 and 320 nm, and this was the preliminary sign for the biosynthesis of TiO2 NPs. The FTIR analysis was used to perform a qualitative validation of the biosynthesized TiO2 nanoparticles. XRD analysis indicated the crystallinity of TiO2 NPs in anatase form. Microscopic investigation revealed that TiO2 NPs were spherical and polygonal in shape, with sizes ranging from 75 to 123 nm. The EDX analysis of green synthesized NPs showed the presence of TiO2 NPs, demonstrating the peak of titanium ion and oxygen. The hydrodynamic diameter and polydispersity index (PDI) of the TiO2 NPs were found to be 130.3 nm and 0.237, respectively. The developed TiO2 NPs containing CS gel exhibited the desired thixotropic properties with pseudoplastic behavior. In vivo wound healing studies and histopathological investigations of healed wounds demonstrated the excellent wound-healing efficacy of TiO2 NPs containing CS gel in diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Nanopartículas , Óleos Voláteis , Ratos , Animais , Titânio/farmacologia , Ocimum sanctum/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Nanopartículas/ultraestrutura , Cicatrização , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
12.
Anal Chem ; 94(30): 10813-10823, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35876218

RESUMO

Calcium and chloride levels are closely related to lysosome dysfunction. However, the simultaneous measurement of calcium (Ca2+) and chloride (Cl-) in acidic subcellular organelles, which is conducive to a deep understanding of lysosome-related biological events, remains a challenge. In this study, we developed a pH-insensitive, ratiometric NIR nanoprobe for the simultaneous detection of Ca2+ and Cl- in acidic lysosomes and determined the roles of the two ions in lysosome function. The upconversion nanoprobe with blue, green, and red emissions was modified with a Ca2+-sensitive dye (Rhod-5N) and Cl--responsive fluorophore (10,10'-bis[3-carboxypropyl]-9,9'-biacridinium dinitrate, BAC). As a result of a dual-luminescence resonance energy transfer between upconversion nanoparticles (UCNPs) and Rhod-5N/BAC, the blue and green upconversion luminescence (UCL) of UCNPs were quenched and the red UCL was used as the reference signal. The ratiometric upconversion nanoprobe possesses a specific ability for the concurrent recognition of Ca2+ and Cl- ions independent of the influence of the environmental pH. To locate the probe in the lysosome, dextran was further modified with upconversion nanoparticles. Then, the nanoprobe with a high spatial resolution was constructed for the simultaneous monitoring of Ca2+ and Cl- in acidic lysosomes. Moreover, it was found that the reduction of lysosomal Cl- affects the release of lysosomal Ca2+, which further blocks the activities of specific lysosomal enzymes. The ratiometric NIR nanoprobe has great potential for decoding and evaluating lysosomal diseases.


Assuntos
Cloretos , Nanopartículas , Cálcio , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Lisossomos , Nanopartículas/ultraestrutura
13.
Int J Nanomedicine ; 17: 3079-3096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859731

RESUMO

Background: Multidrug resistance is a common reason behind the failure of chemotherapy. Even if the therapy is effective, serious adverse effects might develop due to the low specificity and selectivity of antineoplastic agents. Mesoporous silica nanoparticles (MSNs) are promising materials for tumor-targeting and drug-delivery due to their small size, relatively inert nature, and extremely large specific surfaces that can be functionalized by therapeutic and targeting entities. We aimed to create a fluorescently labeled MSN-based drug-delivery system and investigate their internalization and drug-releasing capability in drug-sensitive MCF-7 and P-glycoprotein-overexpressing multidrug-resistant MCF-7 KCR cancer cells. Methods and Results: To track the uptake and subcellular distribution of MSNs, particles with covalently coupled red fluorescent Rhodamine B (RhoB) were produced (RhoB@MSNs). Both MCF-7 and MCF-7 KCR cells accumulated a significant amount of RhoB@MSNs. The intracellular RhoB@MSN concentrations did not differ between sensitive and multidrug-resistant cells and were kept at the same level even after cessation of RhoB@MSN exposure. Although most RhoB@MSNs resided in the cytoplasm, significantly more RhoB@MSNs co-localized with lysosomes in multidrug-resistant cells compared to sensitive counterparts. To examine the drug-delivery capability of these particles, RhoB@Rho123@MSNs were established, where RhoB-functionalized nanoparticles carried green fluorescent Rhodamine 123 (Rho123) - a P-glycoprotein substrate - as cargo within mesopores. Significantly higher Rho123 fluorescence intensity was detected in RhoB@Rho123@MSN-treated multidrug-resistant cells than in free Rho123-exposed counterparts. The exceptional drug-delivery potential of MSNs was further verified using Mitomycin C (MMC)-loaded RhoB@MSNs (RhoB@MMC@MSNs). Exposures to RhoB@MMC@MSNs significantly decreased the viability not only of drug-sensitive but of multidrug-resistant cells and the elimination of MDR cells was significantly more robust than upon free MMC treatments. Conclusion: The efficient delivery of Rho123 and MMC to multidrug-resistant cells via MSNs, the amplified and presumably prolonged intracellular drug concentration, and the consequently enhanced cytotoxic effects envision the enormous potential of MSNs to defeat multidrug-resistant cancer.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos/uso terapêutico , Doxorrubicina , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Nanopartículas/ultraestrutura , Neoplasias/tratamento farmacológico , Porosidade , Dióxido de Silício/farmacologia
14.
J Control Release ; 345: 464-474, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331785

RESUMO

Cationic synthetic anticancer polymers and peptides have attracted increasing attention for advancing cancer treatment without causing drug resistance development. To circumvent in vivo instability and toxicity caused by cationic charges of the anticancer polymers/peptides, we report, for the first time, a nanoparticulate delivery system self-assembled from a negatively charged pH-sensitive polypeptide poly(ethylene glycol)-b-poly(ʟ-lysine)-graft-cyclohexene-1,2-dicarboxylic anhydride and a cationic anticancer polypeptide guanidinium-functionalized poly(ʟ-lysine) (PLL-Gua) via electrostatic interaction. The formation of nanoparticles (Gua-NPs) neutralized the positive charges of PLL-Gua. Both PLL-Gua and Gua-NPs killed cancer cells in a dose- and time-dependent manner, and induced cell death via apoptosis. Confocal microscopic studies demonstrated that PLL-Gua and Gua-NPs readily entered cancer cells, and Gua-NPs were taken up by the cells via endocytosis. Notably, Gua-NPs and PLL-Gua exhibited similar in vitro anticancer efficacy against MCF-7 and resistant MCF-7/ADR. PLL-Gua and Gua-NPs also induced similar morphological changes in MCF-7/ADR cells compared to MCF-7 cells, further indicating their ability to bypass drug resistance mechanisms in the MCF-7/ADR cells. More importantly, Gua-NPs with higher LD50 and enhanced tumor accumulation significantly inhibited tumor growth with negligible side effects in vivo. Our findings shed light on the in vivo delivery of anticancer peptides and opened a new avenue for cancer treatment.


Assuntos
Antineoplásicos , Nanopartículas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Nanopartículas/ultraestrutura , Peptídeos , Polietilenoglicóis , Polímeros
15.
Biochem Biophys Res Commun ; 595: 82-88, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104704

RESUMO

The development of ultra-long circulating nanodrug delivery systems have showed distinct advantage in maintaining the long-lasting tumor retention. Although the relationship between extended tumor retention and ultra-long plasma half-life was apparent, there was still a lack of experimental evidence to reveal the enhancement mechanism. Herein, we proposed a concept of "Sustained Irrigation" effect ("SI" effect) to elucidate that it was through sustained blood irrigation that the ultra-long circulating nanoparticles achieved long-lasting tumor retention. Besides, in order to intuitively verify the "SI" effect, we developed an "ON-OFF-ON" fluorescence switch technology. The ultra-long circulating delivery nanoparticle was constructed by encapsulating the protein with hydrophilic polymer shell. Nanoparticles with ultra-long plasma half-life (t1/2>40 h) fabricated by this method were employed as models for demonstrating the "SI" effect. The recovery of Cy5.5 fluorescence after the laser quenching meant the "fresh" Cy5.5-labeled nanoparticles were entering tumor, which confirmed the ultra-long circulating nanoparticles in blood could sustainedly irrigate to tumor. Our finding revealed the key mechanism by which ultra-long circulating NDDSs enhanced the tumor accumulation and retention, and provided experimental support for the development of ultra-long circulating delivery system in clinic.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias Experimentais/metabolismo , Soroalbumina Bovina/administração & dosagem , Animais , Carbocianinas/química , Carbocianinas/farmacocinética , Linhagem Celular Tumoral , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Masculino , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Ratos Sprague-Dawley , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Distribuição Tecidual
16.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209005

RESUMO

Drug-resistant bacterial infections exhibit a major threat to public health. Thus, exploring a novel antibacterial with efficient inhibition is urgently needed. Herein, this paper describes three types of MSNs (MSNs-FC2-R1, MSNs-FC2-R0.75, MSNs-FC2-R0.5) with controllable pore size (4-6 nm) and particle size (30-90 nm) that were successfully prepared. The MSNs were loaded with tetracycline hydrochloride (TCH) for effective inhibition of Escherichia coli (ATCC25922) and TCH-resistant Escherichia coli (MQ776). Results showed that the loading capacity of TCH in three types of MSNs was as high as over 500 mg/g, and the cumulative release was less than 33% in 60 h. The inhibitory rate of MSNs-FC2-R0.5 loaded with TCH against E. coli and drug-resistant E. coli reached 99.9% and 92.9% at the concentration of MIC, respectively, compared with the other two types of MSNs or free TCH. Modified MSNs in our study showed a great application for long-term bacterial growth inhibition.


Assuntos
Antibacterianos/administração & dosagem , Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Nanopartículas/química , Dióxido de Silício/química , Tetraciclina/administração & dosagem , Sistemas de Liberação de Medicamentos , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Tamanho da Partícula , Porosidade , Análise Espectral
17.
Molecules ; 27(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209143

RESUMO

The occurrence of 17α-ethinylestradiol (EE2) in the environment and its removal have drawn special attention from the scientific community in recent years, due to its hazardous effects on human and wildlife around the world. Therefore, the aim of this study was to produce an efficient enzymatic system for the removal of EE2 from aqueous solutions. For the first time, commercial silica nanopowder and 3D fibrous chitinous scaffolds from Aplysina fistularis marine sponge were used as supports for horseradish peroxidase (HRP) immobilization. The effect of several process parameters onto the removal mechanism of EE2 by enzymatic conversion and adsorption of EE2 were investigated here, including system type, pH, temperature and concentrations of H2O2 and EE2. It was possible to fully remove EE2 from aqueous solutions using system SiO2(HRP)-chitin(HRP) over a wide investigated pH range (5-9) and temperature ranges (4-45 °C). Moreover, the most suitable process conditions have been determined at pH 7, temperature 25 °C and H2O2 and EE2 concentrations equaling 2 mM and 1 mg/L, respectively. As determined, it was possible to reuse the nanoSiO2(HRP)-chitin(HRP) system to obtain even 55% EE2 degradation efficiency after five consecutive catalytic cycles.


Assuntos
Quitina/química , Etinilestradiol/química , Peroxidase do Rábano Silvestre/química , Nanopartículas/química , Dióxido de Silício/química , Poluentes Químicos da Água/química , Adsorção , Biocatálise , Fenômenos Químicos , Enzimas Imobilizadas , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/ultraestrutura , Análise Espectral , Temperatura
18.
ACS Appl Mater Interfaces ; 14(9): 11883-11894, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213132

RESUMO

Luminescent upconversion nanocrystals (UCNCs) have become one of the most promising nanomaterials for biosensing, imaging, and theranostics. However, their ultimate translation into robust luminescent probes for daily use in biological and medical laboratories requires comprehension and control of the many possible deactivation pathways that cause upconversion luminescence (UCL) quenching. Here, we demonstrate that thorough modeling of UCL rise and decay kinetics using a freely accessible software can identify the UCL quenching mechanisms in small (<40 nm) UCNCs with spatial and temporal resolution. Applied to the most relevant ß-NaYF4:Yb3+,Er3+ UCNCs, our model showed that only a few distinct nonradiative low-energy transitions were deactivated via specific solvent and ligand vibrations with a strong downstream effect on the population and depopulation dynamics of the emitting states. UCL quenching could penetrate ca. 4 nm inside the UCNC, which resulted in significant size-dependent changes of UCL intensities and spectra. Despite the large surface-to-volume ratios and UCL quenching via the UCNC surface, we found strong contributions of the outer layers to the overall UCL, which will be highly important for the design of UCNPs to investigate biomolecular interactions via distance-dependent energy transfer methods. Our advanced kinetic model is easily scalable to different UCNC architectures, environments, and energy transfer interactions such that relatively simple modeling of UCL kinetics can be used for efficiently optimizing UCNCs for their final application as practical luminescent probes.


Assuntos
Luminescência , Medições Luminescentes/métodos , Nanopartículas/química , Nanoestruturas/química , Cinética , Modelos Químicos , Nanopartículas/ultraestrutura , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Solventes
19.
J Control Release ; 342: 93-110, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973308

RESUMO

In the drug delivery field, there is beyond doubt that the shape of micro- and nanoparticles (M&NPs) critically affects their biological fate. Herein, following an introduction describing recent technological advances for designing nonspherical M&NPs, we highlight the role of particle shape in cell capture, subcellular distribution, intracellular drug delivery, and cytotoxicity. Then, we discuss theoretical approaches for understanding the effect of particle shape on internalization by the cell membrane. Subsequently, recent advances on shape-dependent behaviors of M&NPs in the systemic circulation are detailed. In particular, the interaction of M&NPs with blood proteins, biodistribution, and circulation under flow conditions are analyzed. Finally, the hurdles and future directions for developing nonspherical M&NPs are underscored.


Assuntos
Fenômenos Biológicos , Nanopartículas , Membrana Celular , Sistemas de Liberação de Medicamentos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Distribuição Tecidual
20.
Nat Commun ; 13(1): 197, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017467

RESUMO

To dissect the antibiotic role of nanostructures from chemical moieties belligerent to both bacterial and mammalian cells, here we show the antimicrobial activity and cytotoxicity of nanoparticle-pinched polymer brushes (NPPBs) consisting of chemically inert silica nanospheres of systematically varied diameters covalently grafted with hydrophilic polymer brushes that are non-toxic and non-bactericidal. Assembly of the hydrophilic polymers into nanostructured NPPBs doesn't alter their amicability with mammalian cells, but it incurs a transformation of their antimicrobial potential against bacteria, including clinical multidrug-resistant strains, that depends critically on the nanoparticle sizes. The acquired antimicrobial potency intensifies with small nanoparticles but subsides quickly with large ones. We identify a threshold size (dsilica ~ 50 nm) only beneath which NPPBs remodel bacteria-mimicking membrane into 2D columnar phase, the epitome of membrane pore formation. This study illuminates nanoengineering as a viable approach to develop nanoantibiotics that kill bacteria upon contact yet remain nontoxic when engulfed by mammalian cells.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Nanopartículas/química , Antibacterianos/síntese química , Eritrócitos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Especificidade de Órgãos , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...